Revised January 1999

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

FAIRCHILD

SEMICONDUCTOR

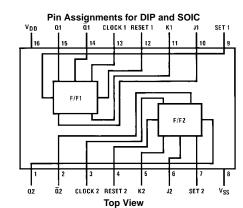
CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

General Description

The CD4027BC dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. Each flip-flop has independent J, K, set, reset, and clock inputs and buffered Q and \overline{Q} outputs. These flip-flops are edge sensitive to the clock input and change state on the positive-going transition of the clock pulses. Set or reset is independent of the clock and is accomplished by a high level on the respective input.

All inputs are protected against damage due to static discharge by diode clamps to V_{DD} and V_{SS}.

October 1987


Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Low power: 50 nW (typ.)
- Medium speed operation: 12 MHz (typ.) with 10V supply

Ordering Code:

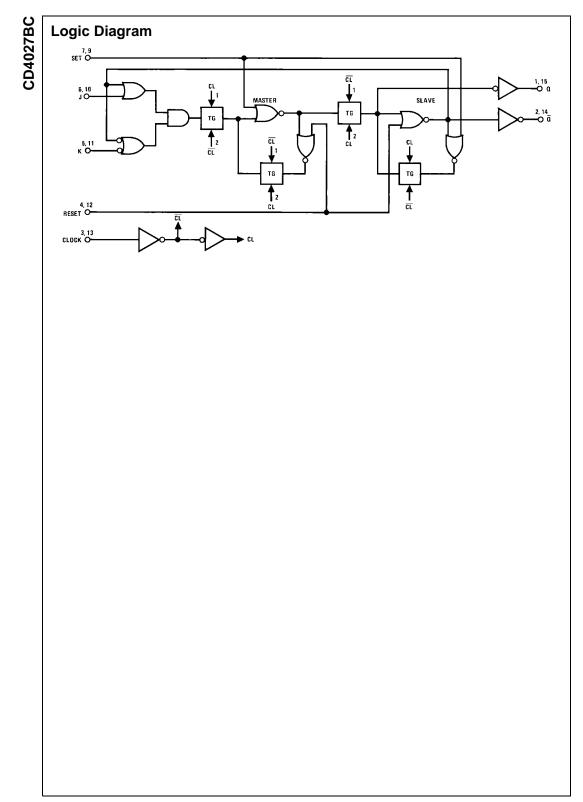
Order Number	Package Number	Package Description			
CD4027BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body			
CD4027BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide			
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Connection Diagram

Truth Table

Inputs t _{n-1} (Note 1)							Outputs t _n (Note 2)			
CL (Note 3)	J	К	S	R	Q	Q	Q			
~	Ι	Х	0	0	0	Ι	0			
~	Х	0	0	0	I.	1	0			
~	0	Х	0	0	0	0	I			
~	Х	Т	0	0	Т	0	I			
\sim	Х	Х	0	0	Х		(No Change)			
х	Х	Х	Т	0	Х	1	0			
х	Х	Х	0	Ι	Х	0	L			
х	Х	Х	Т	Т	Х	Т	I			

I = HIGH Level O = LOW Level


- X = Don't Care
- ✓ = LOW-to-HIGH ~ = HIGH-to-LOW

Note 1: to a refers to the time interval prior to the positive clock pulse transition

Note 2: tn refers to the time intervals after the positive clock pulse transition

Note 3: Level Change

www.fairchildsemi.com

Absolute Maximum Ratings(Note 4)

–0.5 V_{DC} to +18 V_{DC}
–0.5V to V_{DD} +0.5 V_{DC}
$-65^{\circ}C$ to $+150^{\circ}C$
700 mW
500 mW
260°C

Recommended Operating Conditions (Note 5)

DC Supply Voltage (V_{DD})

Input Voltage (V_{IN})

3V to 15 V_{DC} 0V to V_{DD} V_{DC} CD4027BC

mended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 5: $V_{SS} = 0V$ unless otherwise specified.

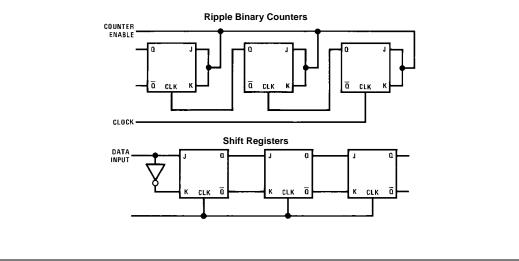
Symbol	Parameter	Conditions	-40	_40°C		+25°C			+85°C	
	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		4			4		30	μΑ
		V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		8			8		60	μΑ
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		16			16		120	μΑ
V _{OL}	LOW Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	V
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	V
V _{OH}	HIGH Level	I _O < 1 μA								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		V
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5			1.5		1.5	V
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$		3.0			3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0			4.0		4.0	V
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5			3.5		V
	Input Voltage	$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0			7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0			11.0		V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 7)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{ОН}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 7)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.3		-10 ⁻⁵	-0.3		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.3		10 ⁻⁵	0.3		1.0	μA

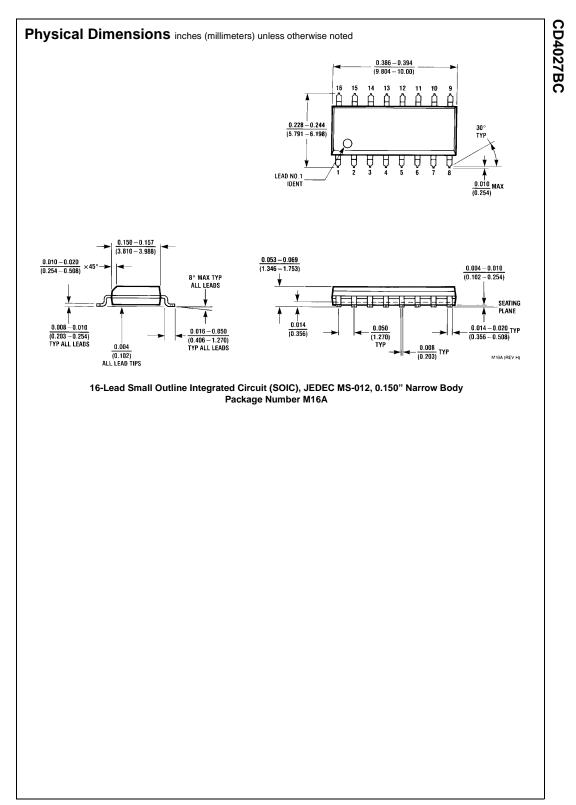
DC Electrical Characteristics (Note 6)

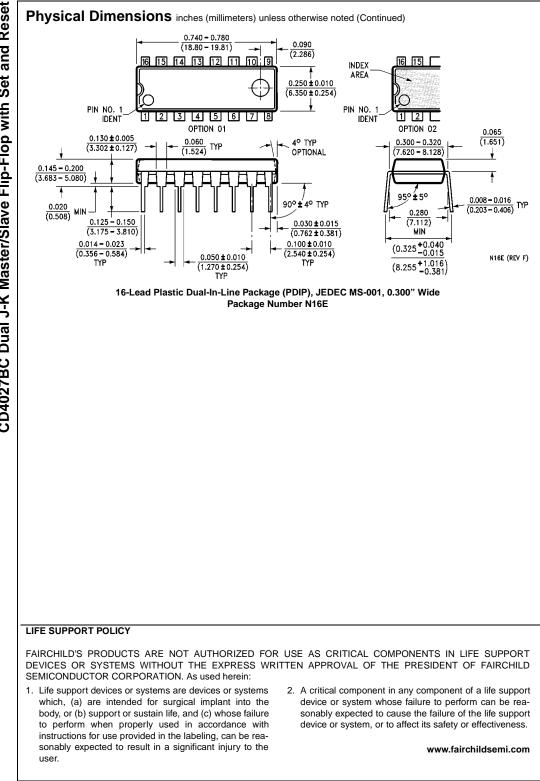
Note 6: $V_{SS} = 0V$ unless otherwise specified.

Note 7: $I_{\mbox{OH}}$ and $I_{\mbox{OL}}$ are tested one output at a time.

www.fairchildsemi.com


AC Electrical Characteristics (Note 8)


 $T_{A}\,{=}\,25^{\circ}\text{C},\,C_{L}\,{=}\,50$ pF, $t_{rCL}\,{=}\,t_{fCL}\,{=}\,20$ ns, unless otherwise specified Symbol Parameter Conditions Min Max Units Тур $V_{DD} = 5V$ Propagation Delay Time 200 400 t_{PHL} or t_{PLH} ns from Clock to Q or Q $V_{DD} = 10V$ 80 160 ns $V_{DD} = 15V$ 65 130 ns tPHL or tPLH Propagation Delay Time $V_{DD} = 5V$ 170 340 ns from Set to Q or Reset to Q $V_{DD} = 10V$ 70 140 ns $V_{DD} = 15V$ 55 110 ns t_{PHL} or t_{PLH} Propagation Delay Time $V_{DD} = 5V$ 110 220 ns $V_{DD} = 10V$ from Set to Q or 50 100 ns Reset to Q $V_{DD} = 15V$ 40 80 ns Minimum Data Setup Time $V_{DD} = 5V$ 135 270 t_S ns $V_{DD} = 10V$ 55 110 ns $V_{DD} = 15V$ 45 90 ns Transition Time $V_{DD} = 5V$ t_{THL} or t_{TLH} 100 200 ns $V_{DD} = 10V$ 50 100 ns $V_{DD} = 15V$ 40 80 ns Maximum Clock Frequency $V_{DD} = 5V$ 2.5 5 MHz f_{CL} (Toggle Mode) $V_{DD} = 10V$ 6.2 12.5 MHz MHz $V_{DD} = 15V$ 7.6 15.5 $V_{DD} = 5V$ 15 Maximum Clock Rise ${\rm t_{rCL} \ or \ t_{fCL}}$ μs $V_{DD} = 10V$ and Fall Time 10 μs $V_{DD} = 15V$ 5 μs Minimum Clock Pulse t_W $V_{DD} = 5V$ 100 200 ns Width ($t_{WH} = t_{WL}$) $V_{DD} = 10V$ 40 80 ns $V_{DD} = 15V$ 32 65 ns Minimum Set and $V_{DD} = 5V$ 80 160 ns t_{WH} Reset Pulse Width $V_{DD} = 10V$ 30 60 ns $V_{DD} = 15V$ 25 50 ns 7.5 Average Input Capacitance Any Input C_{IN} 5 pF C_{PD} Power Dissipation Capacity Per Flip-Flop 35 pF (Note 9)


Note 8: AC Parameters are guaranteed by DC correlated testing.

Note 9: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C Family Characteristics application note, AN-90.

Typical Applications

