Features

Package Dimensions

- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}$

Parameter	Max.	Unit
Power Dissipation	100	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA
Continuous Forward Current	40	mA
Derating Linear From $50^{\circ} \mathrm{C}$	0.4	$\mathrm{~mA} /{ }^{\circ} \mathrm{C}$
Reverse Voltage	5	V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Lead Soldering Temperature $[4 \mathrm{~mm}(.157 ")$ From Body]	$260^{\circ} \mathrm{C}$ for 5 Seconds	

Notes:

1. All dimensions are in millimeters (inches).
2. Protruded resin under flange is $1.0 \mathrm{~mm}(.04$ ") max.

Unit: mm (inches)
3. Lead spacing is measured where the leads emerge from the package.
4. Specifications are subject to change without notice.

Part No.	Emitting Color	Lens Color	Peak Wavelength λp (nm)	$\begin{gathered} \text { Vf }(\mathrm{V}) \\ \mathrm{I}_{\mathrm{f}}=20 \mathrm{~mA} \\ (\text { Note } \mathrm{E} 1) \end{gathered}$	Iv (mcd) (Note E2)	Viewing Angle $2 \theta_{1 / 2}$ (Deg) (Note E3)
				Min Typ	Min Typ	
EL-3RGU32	Hi-Red	Water Clear	644	1.6-2.0	50-80	120
	Hi-Green		568	1.7-2.2	25-50	120
EL-3RGX34	Hi-Red	White Diffused	644	1.6-2.0	20-40	140
	Hi- Green		568	1.7-2.2	15-30	140
EL-3YGX34	Hi-Yellow	White Diffused	588	1.6-2.0	20-30	140
	Hi- Green		568	$1.7-2.2$	15-35	140

Parameter

Luminous Intensity
Dominant Wavelength
Peak Emission Wavelength
Viewing Angle
Spectral Line Half-Width
Forward Voltage
Reverse Current

Test Condition

$I_{f}=20 \mathrm{~mA}$ (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.)
$I_{f}=20 \mathrm{~mA}$ (Note E2: The dominant wavelength (λd) is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.)
$\mathrm{I}_{\mathrm{f}}=20 \mathrm{~mA}$
(Note E3. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.)
$\mathrm{I}_{\mathrm{f}}=20 \mathrm{~mA}$
$I_{f}=20 \mathrm{~mA}$
$\mathrm{I}_{\mathrm{f}}=20 \mathrm{~mA}$

