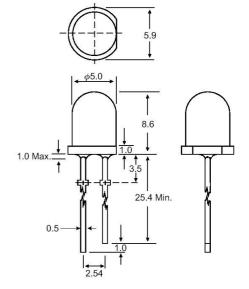
HI-BRIGHT TYPE LED

Features

- High intensity
- Wide viewing angle
- General purpose leads
- Reliable and rugged


Absolute Maximum Ratings at Ta=25

Parameter	Max.	Unit	
Power Dissipation	100	mW	
Peak Forward Current	100	mA	
(1/10 Duty Cycle, 0.1ms Pulse Width)	100		
Continuous Forward Current	40	mA	
Derating Linear From 50	0.4	mA /	
Reverse Voltage	5	V	
Operating Temperature Range	-40 to +80		
Storage Temperature Range	-40 to +80		
Lead Soldering Temperature	260 for 5 Seconds		
[4mm(.157") From Body]			

Notes:

- 1. All dimensions are in millimeters (inches).
- 2. Protruded resin under flange is 1.0mm (.04") max.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject to change without notice.

Package Dimensions

Unit: mm (inches)

Tolerance: ±0.25mm (.010") max

Part No.	Emitted Color	Lens Color	Peak Wavelength λp (nm)	Vf (V) I _f = 20mA (Note E1)	Iv (mcd) (Note E2)	Viewing Angle $2\theta_{1/2}$ (Deg) (Note E3)
				Min Typ	Min Typ	
EL-5R631-BSO	Red	Red Diffused	660	1.6 – 1.8	25 – 40	60
EL-5G631-BSO	Green	Green Diffused	568	1.7 – 2.2	6.0 – 22	60
EL-5Y631-BSO	Yellow	Yellow Diffused	590	1.6 – 2.1	25 – 55	60
EL-5R232-BSO	Red	Water Clear	660	1.6 – 1.8	45 – 65	20
EL-5G232-BSO	Green	Water Clear	568	1.7 – 2.2	25 – 65	20
EL-5Y232-BSO	Yellow	Water Clear	590	1.6 – 2.1	45 – 65	20
EL-5R233-BSO	Red	Red Transparent	660	1.6 – 1.8	50 – 90	20
EL-5G233-BSO	Green	Green Transparent	568	1.7 – 2.2	18 – 60	20
EL-5Y233-BSO	Yellow	Yellow Transparent	590	1.6 – 2.1	45 – 65	20

Parameter Test Condition

Luminous Intensity I_f = 20mA (Note E1. Luminous intensity is measured with a light sensor and filter combination that approximates

the CIE eye-response curve.)

 $\label{eq:local_$

the single wavelength which defines the color of the device.)

Peak Emission Wavelength $I_f = 20 \text{mA}$

Viewing Angle (Note E3. 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.)

 $\label{eq:spectral Line Half-Width} \begin{aligned} & Spectral \ Line \ Half-Width \end{aligned} \qquad \begin{aligned} & I_f = 20 \text{mA} \\ & Forward \ Voltage \end{aligned} \qquad \begin{aligned} & I_f = 20 \text{mA} \\ & Reverse \ Current \end{aligned} \qquad \begin{aligned} & I_f = 20 \text{mA} \end{aligned}$